Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene)triphosphoric acid.
نویسندگان
چکیده
It is difficult to overestimate the importance of nucleoside triphosphates in cellular chemistry: They are the building blocks for DNA and RNA and important sources of energy. Modifications of biologically important organic molecules with fluorine are of great interest to chemists and biologists because the size and electronegativity of the fluorine atom can be used to make defined structural alterations to biologically important molecules. Although the concept of nonhydrolyzable nucleotides has been around for some time, the progress in the area of modified triphosphates was limited by the lack of synthetic methods allowing to access bisCF(2)-substituted nucleotide analogs-one of the most interesting classes of nonhydrolyzable nucleotides. These compounds have "correct" polarity and the smallest possible steric perturbation compared to natural nucleotides. No other known nucleotides have these advantages, making bisCF(2)-substituted analogs unique. Herein, we report a concise route for the preparation of hitherto unknown highly acidic and polybasic bis(difluoromethylene)triphosphoric acid 1 using a phosphorous(III)/phosphorous(V) interconversion approach. The analog 1 compared to triphosphoric acid is enzymatically nonhydrolyzable due to substitution of two bridging oxygen atoms with CF(2) groups, maintaining minimal perturbations in steric bulkiness and overall polarity of the triphosphate polyanion. The fluorinated triphosphoric acid 1 was used for the preparation of the corresponding fluorinated deoxynucleotides (dNTPs). One of these dNTP analogs (dT) was demonstrated to fit into DNA polymerase beta (DNA pol beta) binding pocket by obtaining a 2.5 A resolution crystal structure of a ternary complex with the enzyme. Unexpected dominating effect of triphosphate/Mg(2+) interaction over Watson-Crick hydrogen bonding was found and discussed.
منابع مشابه
Synthesis and Evaluation of New Fluorinated Anti-Tubercular Compounds
Treatment of tuberculosis (TB) and the discovery of effective new anti tubercular drugs is one of the most urgent priorities in health organizations all around the world. In the present study, fluorinated analogs of some of the most important anti-TB agents such as p-aminosalicylic acid (PAS), thiacetazone and pyrazinamide were synthesized and tested against TB. The fluorinated analog of thiace...
متن کاملSynthesis and Evaluation of New Fluorinated Anti-Tubercular Compounds
Treatment of tuberculosis (TB) and the discovery of effective new anti tubercular drugs is one of the most urgent priorities in health organizations all around the world. In the present study, fluorinated analogs of some of the most important anti-TB agents such as p-aminosalicylic acid (PAS), thiacetazone and pyrazinamide were synthesized and tested against TB. The fluorinated analog of thiace...
متن کاملLocking Out Ants – Synthesis and Biological Evaluation of Some Fluorinated Repellents
We synthesized a series of fluorinated compounds and tested them in an easy assay for their repellent activity against the ant Myrmica rubra. Depending on their chain length and pattern of fluorination these molecules are efficient repellents for this ant. Fluorinated compounds are stronger repellents than their unfluorinated analogs. 1,1,1-Trifluorotridecan-2-one (4) is an even better repellen...
متن کاملElectrochemical Synthesis of Novel 1,3-Indandione Derivatives and Evaluation of Their Antiplatelet Aggregation Activities
Electrochemical oxidation of some selected catechol derivatives, using cyclic voltammetry, in the presence of different 2-aryl-1,3-indandiones as nucleophiles, resulted in electrochemical synthesis of new 1,3- indandione derivatives in an undivided cell in good yield and purity. A Michael addition mechanism was proposed for the formation of the analogs based on the reaction conditions which wer...
متن کاملElectrochemical Synthesis of Novel 1,3-Indandione Derivatives and Evaluation of Their Antiplatelet Aggregation Activities
Electrochemical oxidation of some selected catechol derivatives, using cyclic voltammetry, in the presence of different 2-aryl-1,3-indandiones as nucleophiles, resulted in electrochemical synthesis of new 1,3- indandione derivatives in an undivided cell in good yield and purity. A Michael addition mechanism was proposed for the formation of the analogs based on the reaction conditions which wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 36 شماره
صفحات -
تاریخ انتشار 2010